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Abstract –  

The great charm resulting from this consideration (a multi-connected universe) lies in recognition of the fact 

that the universe of these being is finite and yet has no limits.                                                                                                                                                                                              

- Albert Einstein 

One of the finest question arise for everyone’s space curiosity is What is the actual shape of the universe?, If the  

universe has boundary or not ?, Is it finite or infinite?. And the global topology of the universe which including the 

question also about its volume and its connectedness. It is the fundamental issue in cosmology which has been 

overlooked for many years and it also proved by many scientist. In this paper, I just reviewed briefly the historical 

background of the Cosmic Topology. And I extended the shape of the universe that is predicted in the Fourth 

dimension.  

Birth of the Cosmological Topology:  

                            One of the oldest cosmological question is the physical extension of space: is it finite or finite? 

(see e.g. LUMINET & LACHIEZ- REY ,1994). In the history of cosmology, it is well known that the Newtonian 

physical space, mathematically identified with infinite Euclidean space  ℝ3 , gave rise to paradoxes such as 

darkness of night (see HARISON, 1987) and to problems of boundary conditions. Regarding for instance the 

Mach’s idea according to which local inertia would result from the contributions of masses at infinity, an obvious 

divergence difficulty arose, since a homogeneous Newtonian universe with non-zero density had an infinite mass. 

The aim of relativistic cosmology was to deduce from gravitational field equations some physical models of the 

universe as a whole. When Einstein (1917) assumed in his static cosmological solution that space was to provide a 

model for a finite space, although without a boundary.  He regarded the closure of space as necessary to solve the 

problem of inertia (EINSTEIN 1934). The spherical model cleared up most of the paradoxes stemmed from 

Newtonian cosmology in such an elegant way that most cosmologist of the time adopted the new paradigm of a 

closed space, without examining other geometrical possibilities. Einstein was also convinced that the hypersphere 

provided not only the metric of cosmic space namely its topology. However, topology does not seem to been a 

major preoccupation of EINSTEIN: his 1917 cosmological article did not mention any topological alternative to 

the spherical space model.  

Some of his colleagues pointed out to Einstein the arbitrariness of his choice. The reason was the following, The 

global shape of shape is not only depending on the metric; it primarily depends on its topology and requires a 

complementary approach to Riemannian differential geometry. Since Einstein’s equations are partial derivative 

equations, they describe only local geometrical properties of space-time. The latter are contained in a metric 

tensor, which enables us to calculate the components of the curvature tensor at any non singular point of space-

time: to give metric solution of the field equations, correspond several (and in most cases an infinite number of ) 

topologically distinct universe models .    
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                         First , DE SITTER (1917) noticed that the Einsten’s solution admitted a different spaceform, 

namely the 3-dimensional projective space (also called elliptic space ), obtained from the hypersphere by 

identifying antipodal points. The projective space has the same metric as the spherical one, but a different topology 

(for instance, for the same curvature radius its volume is twice smaller).  

                          Next H. Weyl pointed out the freedom of choice between spherical and elliptical topologies. The 

EINSTEIN’S answer (1918) was unequivocal: “Nevertheless I have like an obscure feeling which leads me to 

prefer the spherical model. I have the presentiment that manifolds in which any closed curve can be continuously 

contracted to a point are the simplest ones. Other persons must share feeling, otherwise astronomers would have 

taken into account the case where our space is Euclidean and finite. Then the two- dimensional Euclidean space 

would have the connectivity properties of a ring surface. It is an Euclidean plane in which any phenomenon is 

doubly periodic, where points; located in the same periodical grid are identical. In finite Euclidean space, three 

classes of non continuously contractible loops would exist. In a similar way, the elliptical space possesses a class of 

non continuously contractible loops, contrary to the spherical case, it is the reason why I like it less than the 

spherical space. Can it be proved that elliptical space is the only variant of spherical space? It seems yes to me”.  

                     EINSTEIN (1919) repeated his argumentation in a postcard sent to Felix Klein: “I would like to 

give a reason why the spherical case should be preferred to the elliptical case. In spherical space, any closed curve 

can be continuously contracted to a point, but not in the elliptical space; in other words the spherical space alone 

is simply-connected, not the elliptical one […] Finite spaces of arbitrary volume with the Euclidean metric element 

undoubtedly exist which can be obtained from the infinite spaces by assuming a triple periodicity, namely identity 

between sets of points. However such possibilities, which are not taken into account by general relativity, have the 

wrong property to be multiply-connected”.  From these remarks it follows that the Einstein’s prejudice in favour of 

simple-connectedness of space was of an aesthetical nature, rather than being based on physical reasoning. 

                  In his answer to Weyl, Einstein was definitely wrong on the last point:  in dimension three, an  

infinite number of topological variants of the spherical space- all closed –do exist, including the so-called lens 

spaces(whereas in dimension two, only two spherical spaceforms exist, the ordinary sphere and the elliptic plane).  

However, nobody knew this result in the 1920’s: the topological classification of 3-dimensional spaces was still at 

its beginnings.  The study of Euclidean spaceforms started in the context of crystallography.  FEOFOROFF (1885) 

classified the 18 symmetry groups of crytstalline structures in  𝑅3 , BIEBERBACH (1911) developed a full theory of 

crystallographic groups, and twenty years later only NOWACKI (1934) showed how the Bieber bach’s results 

could be applied to achieve the classification of 3-dimensisonal Euclidean spaceforms.  The case of spherical 

spaceforms was first set by KLEIN (1890) and KILLING (d1891).  The problem was fully solved much later (Wolf, 

1960). Eventually, the classification of homogeneous hyperbolic research (THURSTON, 1979, 1997). 

Going back to relativistic cosmology, the discovery of non-static solution by FRIEDMANN(1922) and, 

independently, LEMAITRE (1927), opened a new era for models of the universe as a whole (see, e.g., LUMINET, 

1997 for an epistemological analysis). Although Friedmann and Lemaitre are generally considered as the 

discoverers of the big bang concept- at least of the notion of a dynamically universe evolving from an initial 

singularity – one of their most original considerations, devoted of the topology of the space, was overlooked. As 

they stated, the homogeneous isotropic universe models (F-L models ) admit spherical, Euclidean or hyperbolic 

space sections according to the sign of their (constant) curvature (respectively positive, zero or negative). In 

adding, FRIEDMANN (1923) pointed out the topological indeterminacy of the solution in his popular book on 

general relativity, and he emphasized how the Einstein’s theory unable to deal with the global structure of the 

space-time. He gave simple example of the cylinder – a locally Euclidean surface which has not the same topology 

as the plane. Generalizing the argument to higher dimensions, he concluded that several topological spaces could 

be used to describe the same solution of Einstein’s equations. 

           Topological considerations were fully developed in his second cosmological article (FRIEDMANN, 

1924), although primarily devoted to the analysis of hyperbolic solutions. FRIEDMANN clearly outlined the 

fundamental limitations of relativistic cosmology: “without additional assumptions, the Einstein’s world equations 

do not answer the question of the finiteness of our universe”, he wrote. Then he described how the space could 

become finite (and multi-connected) by suitably identifying points. He also predicted the possible existence of 

“ghost” images of astronomical sources, since at the same point of a multi-connected space an object and its ghost 

would coexist. He added that “a space with positive curvature is always finite “, but he recognized that fact that the 

mathematical knowledge of his time did not allow him to “solve the question of finiteness for a negatively- curved 

space”. 
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             Comparing with Einstein’s reasoning, it appears the cosmologist had no prejudice in favour of a simply-

connected topology. Certainly Friedmann believed that only spaces with finite volume were physically realistic, 

Prior to his  discovery of hyperbolic solutions, the cosmological solutions derived by Einstein, de sitter and himself 

had a positive spatial curvature , thus a finite volume. With negatively – curved spaces, the situation became 

problematic, because the “natural” topology of hyperbolic space has an infinite volume. It is the reason why 

friedmann , in order to justify the physical patience pertinence of his solutions, emphasized the possibility of 

compactifying space by suitable identifications of  points.  

              Lemaitre fully shared the common belief in the closure of space. In a talk given at the institute 

Catholique de Paris (LEMAITRE, 1978), the Belgian physicst expressed his view that Riemannian geometry 

“dissipated the nightmare of infinite space”. His two major cosmological models (the non-singular, “Eddington-

Lemaitre” model, 1927, and the singular, “hesitating universe” model, 1931) assumed positive space curvature. 

Thus  Lemaitre  thoroughly  discussed the possibility of elliptical space, that he preferred to the spherical one. 

Later, LEMAITTRE (1958) also noticed the possibility of hyperbolic spaces as well as Euclidean spaces with finite 

volumes for describing the physical universe. 

                Such fruitful ideas of cosmic topology remained widely ignored by the main stream of big bang 

cosmology. Perhaps the EINSTIEN-DE SITTER model (1932), which assumed Euclidean space and eluded the 

topological question, had a negative influence on the development of the field. Almost all subsequent textbooks and 

monographies  on the relativistic cosmology assumed that the global structure of the infinite Euclidean space, or 

the infinite hyperbolic space, without mentioning at all the topological indeterminacy. As a consequence, some 

confusion settled down about the real meaning of the terms “open” and “closed” the F-L solutions, even in recent 

specialized articles (eg. WHITE and SCOTT . 1906) whereas they apply correctly to time evolution (open models 

stand for every expanding universe, closed models stand for expanding- contracting solutions), they do not properly 

describe the extension of the space (open for infinite , closed for finite ). Nevertheless it is still frequent to read that 

the (closed) spherical model have infinite volumes. The correspondence is true only in the very special case of a 

simply – connected topology and a zero cosmological constant. According to Friedmann’s original remark, in 

order to know if a space is finite or infinite, it is not sufficient to determine the sign of its spatial curvature, r 

equivalently in a cosmological context to measure the ratio of the average density to the critical value: additional 

assumptions are necessary – those arising from topology, precisely. 

               Until 1995, investigations in cosmic topology were rather scarce (see references in LaLu95). From an 

epistemological point of view, it seems that the prejudice in favour of simply- connected (rather than multi-

connected) spaces was of the same kind as the prejudices in favour of static (rather than dynamically) cosmologies 

during the 1920’s. At the first glance, an economy principle” (often useful in physical modeling) could be invoked 

to preferably select the simply-connected topologies. However, on one hand, new approaches of spacetime, such as 

quantum cosmology, suggest that the smallest closed hyperbolic manifolds are favored (CORNISH, GIBBNS & 

WEEKS, 1908), thus providing a new paradigm for what is the “simplest” manifold. On the other hand, present 

astronomical data indicate that the average density of the observable universe is less than the critical value (𝛺 =
0.3 − 0.4), thus suggesting that we live in a negatively-curved F-L universe. Putting together these two requisites, 

cosmologists must face that fact that a negatively- curved space with a finite volume is necessarily multi-connected. 

FURTHER DEVLOPMENTS: 

   In the last decades, much effort in observational and theoretical cosmology has been directed towards 

determining towards determining the curvature of the universe. The problem of topology of space-time was 

generally ignored within the framework of classical relativistic cosmology. It began to be seriously discussed in 

quantum gravity for various reasons: the spontaneous birth of the universe from quantum vacuum requires the 

universe to have compact spacelike  hypersurfaces, and the closure of space is a necessary condition. To render 

tractable the integrals of quantum gravity (ATKATZ & PAGELS,1982). However, the topology of space-time also 

enters in a fundamental way in classical general relativity. Many cosmologists were surprisingly unaware of how 

topology and cosmology could fit together to provide new insights in universe models. Aimed to create a new 

interest in the field of cosmic topology, the existensive review by LaLu95 stressed on what multi-connectedness of 

the universe would mean and on its observational consequences. However two different papers (STEVENS et 

al.,1993; DE LIVEIRA COSTA & SMOOT,1995) declared that the small universe idea was “dead”; in fact, 

drawing general conclusions from few examples mostly taken into Euclidean case, they did not take into account 

the most interesting spaces for realistic universe models, namely the compact hyperbolic manifolds, which require 

a quite different treatment (LaLu95, CORNISH et al., 1997a). Ironically enough, a worldwide interest for the 

subject has flourished since 1995, both from an observational point of view and from a theoretical one: 

approximately the same amount of papers in cosmic topology have been published within the last 3 years as in the 

previous 80 years! Interesting progress has been achieved in mathematics as well as in cosmology. I briefly 

summarizes below some of these advances. 

 

http://www.ijcrt.org/


www.ijcrt.org                                           © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 

IJCRT2012105 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 929 
 

MATHEMATICAL  ADVANCES : 

Topological classification of the spaces:  

                                         Topology can be defined as the study of continuous transformations, albeit the 

property which remains unchanged when continuous transformations are made on a geometry, like squeezing, 

stretching etc. which change its metric but not its topology. Two manifolds belong to the same topological class are 

called homeomorphic and can be continuously and reversibly transformed into each other. In other words, if we 

have two manifolds 𝑀1 and  𝑀2,  a  homemorphism  between them would be continuous map 𝜑: 𝑀1 ↔ 𝑀2with a 

defined inverse. 

                              𝐹𝐿𝑅𝑊 Models admit spatial sections of homogeneous and isotropic spherical, hyperbolic or 

Euclidean manifolds depending on whether the sign of spatial curvature is positive, negative or zero. However, 

there is often a common misconception that flat or hyperbolic universes imply an infinite universe, which was 

proved unfounded long ago by Friedmann  and Lemaitre   who discovered that FL metrics with zero or hyperbolic 

topologies did admit spatially closed topologies. However, the works of these and many other people remain 

ignored and cosmology textbooks implicitly assume space to be a simply connected hypersphere. 

                                 Given the isotropy of the microwave background, it is implied that the curvature  of  space 

is almost constant throughout. Hence literature on possible manifolds for the universe focuses mainly on manifolds 

of constant curvature. General relativity is invariant under diffeomorphisms which signify change of coordinates 

but not homeomorphisms. Thus, the principle of covariance goes a long way in predicting the laws of physics that a 

body follows in different regions of space , however topology remains independent of such a correlation. 

 

                         Below are explained some basic concepts that are frequently used in classifying and studying 

topological spaces 

 Homogeneous Spaces: 

                                                       For two dimensional surfaces, it was shown by, that if  a space  is closed and 

connected, it is  homeomorphic to Riemannian  surfaces of constant curvature. A Riemann surface is defined as a 

complex manifold of dimension one. Hence all closed surfaces can be  classified into one of the three Riemannian 

metrics: Spherical 𝑆2, Euclidean 𝑬𝟐 and Hyperbolic  𝑯𝟐. 

               In three dimensions, this is not true, as  we can clearly see from a three dimensional 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑺𝟐 × 𝑹 

which is not  homeomorphic to any of the constant curvature geometries, neither the spherical nor the Euclidean 

manifold. The metric of the three dimensional cylinder is homogeneous but an isotropic. There are in total eight 

types of homogeneous three dimensional geometries out of which only five of them are of a constant curvature. 

                The symmetries of a manifold can be quantified with the group G of isometries, which are 

transformations to the manifold that leave the metric invariant. A homogeneous manifold, G is non-trivial. The 

group H of all points y acts transitively on M as   𝑔 ∈ 𝐺𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡𝑔(𝑥)  = 𝑦   with 𝑦 being   referred to as the orbit 

of x. The subgroup of isometries that leave the point x fixed (for instance, rotations around x) is called the isotropy 

group, I at x. These isometries are related by       

𝑑𝑖𝑚(𝐺)  = 𝑑𝑖𝑚(𝐻) + 𝑑𝑖𝑚(𝐼). 
𝐺 is simply transitive on 𝐻 if 𝑑𝑖𝑚(𝐺)  = 𝑑𝑖𝑚(𝐻) and multiply  transitive if dim(G)> dim(H). 
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The isometry group has 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 ≤ 𝑛(𝑛 + 1)/2 for an n-dimensional manifold and attains maximum value 

for a maximally symmetric manifold. A maximally symmetric manifold is essentially a manifold which has the same 

number of symmetries as  an ordinary Euclidean space. For the space-time metric of our universe, a maximally 

symmetric space should have an Isometry group of dimension = 10. 

Analyses, space times of dimensions (≥ 6 ≤ 10) are not realistic cos-mological models due the large number of 

dimensions involved. For dim (G)≤6,the group may act on M or lower  dimensional manifolds. For dim(G) = 4, the 

isometry acts on a manifold that is homogeneous in space and time and gives us a model which is spatially 

symmetric in space and time, but does not allow expansion. For the alternative case, when a subgroup of G acts 

only on the space-like hypersurfaces, giving us spatially homogeneous space times. This scenario has three possible 

sub cases: 

              1)  dim(G) = 6, where G3 acts on spatially homogeneous spaces and there is a 𝐺3isotropy group. Thus, 

we have spatially homogeneous and isotropic spacetimes which also allow space like hypersurfaces of constant 

curvature i.e. the FLRW models. 

               2)  dim(G) = 3, where there is only one  group of isometries , i.e. the group G3 acting on the spatially  

homogeneous spaces. Thus we have homogeneous and an isotropic spaces, one example of which are the Bianchi 

models [20]. 

                3)  dim (G) =  4, where G is multiply transitive on 3 dimensional subspaces, some such space times 

are discussed in [21]. We will not consider these space-times in this text. 

 Simply and Multiply Connected Spaces: 

      A good place to begin is the definition of the concept of homotopy which is an important classification 

regime used in topology. Two loops 𝛾 and 𝛾′ drawn on a manifold surface are said to be homotopic if one can be 

continuously trans-formed to the other. A simply connected manifold now can simply be defined as a manifold for 

which any loop is homotopic to another, or equivalently, all loops are homotopic to a point. If this condition is not 

true for all possible loops on the manifold, it is multi-connected. Homotopic loops give us information about holes 

or handles in a manifold. In higher dimensions, one dimensional homotopy loops are not enough to encompass all 

the properties of the topology, leading to the introduction of homotopy groups. The first homotopy group is called  

the fundamental group. Poincare conjectured that any connected closed n-dimensional manifold with a trivial 

fundamental group is topologically equivalent to a sphere.  

                Multi connectedness implies that the fundamental group is non-trivial, essentially meaning that there 

is one hole in the manifold. Poincar’e in 1904, conjectured that a connected closed n-dimensional manifold with a 

trivial fundamental group must be topologically equivalent to a sphere, 𝑆𝑛 .  

                   The set of solutions to Einstein’s equations does not place any topological constraints on the 

manifold except its curvature. The 𝐹𝐿𝑅𝑊 models describe the observed universe with the greatest accuracy among 

the known models and give solutions for homogeneous and isotropic models with spherical, hyperbolic or flat 

topologies further incorporating a wide variety of possible solutions like the desitter solution or solutions with a 

cosmological constant or a non standard equation of state. The assumption in most literature of a simply connected 

universe is arbitrary and replacing the same with a multi-connected universe changes avery few characteristics in 

the 𝐹𝐿𝑅𝑊 models. One of the differences lies in the range of the coordinates where for a simply connected 

universe, one would have                                         𝜑: 0 → 2𝜋, 𝜃: −𝜋/2 → 𝜋/2, 𝜒: 0 →  ∞ 𝑓𝑜𝑟 𝑘 = −1, 0 𝑎𝑛𝑑 0 →
𝜋 𝑓𝑜𝑟 𝑘 =  1 whereas for a multi-connected model, space is smaller and the range of the coordinates is reduced. 

As discussed earlier, observations suggest that the universe is homogeneous and locally isotropic which implies 

that space has constant curvature. Thereby, most multi-connected models explored in literature rely on this 

assumption with the exception of Bianchi and Lemaitre-Bondi models among a few others. How-ever, even with the 

anisotropic models, the homogeneity and local isotropy of these models ensure that the CMB remains isotropic. A 

significant difference19 however is observed in the spectrum of density fluctuations. 

While the finiteness of simply connected models can simply be determined from the sign of curvature of the 

manifold, i.e. infinite for 𝑘 =  0, −1 and finite for 𝑘 =  1, the same does not hold true for multi-connected 

topologies. As early as 1924, it was known that multi-connected models with a zero or negative curvature admitted 

spatially closed topologies . For instance a toroidal universe is of a finite volume and circumference despite zero 

curvature. 

 Fundamental Domain: 

                                       A simple example is a torus whose fundamental domain is a rectangle. To obtain a torus 

from a rectangle, we first identify one pair of opposite sides in the rectangle, thereby getting a cylindrical tube. 

Identifying the other pair of opposite sides gives us a torus. The transformations done in identifying the opposite 

edges form a holonomy group. A holonomy group is a subset of the full isometry group of the covering space. To 

understand the holonomy group, consider a point x and a loop 𝛾 at 𝑥 in the manifold 𝑀. If 𝛾 lies in a simply 

connected domain of  𝑀, it generates a single point 𝑥̃  in  𝑀̃ but if the manifold is multi-connected, it creates a set 

of points  𝑥′̃, 𝑥"̃ … which are said to be homologous to 𝑥̃.  The displacements form isometries referred to as the 

holonomy group 𝛤 in  𝑀̃. Since there is a non zero distance between the homologous points, the group is 
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discontinuous and has no fixed generating point. Thus, the holonomy group is said to act freely and discontinuously 

on  𝑀̃.  

            The full isometries of the universal cover are broken by identifications and we can represent a compact 

manifold as a quotient space given by 𝐺/𝛤 where G is the group of isometries of the domain and 𝛤 is the holonomy 

group. 

 Universal Covering Space: 

                                                  The universal cover of a connected topological space is a simply connected 

space with a map 𝑓: 𝑌 → 𝑋 that is a covering map. By acting with the transformation group on the fundamental 

domain, we get many identical copies of the domain which give us the universal covering manifold. In case of 

simply connected spaces this universal covering is identical to the fundamental domain for instance a sphere   𝑆2 is 

its own universal cover, however in the case of multiply connected spaces we get replicas of the central manifold. 

In this case, a universal manifold is constructed as follows. The space is cut open to make a simply connected space 

with edges, called the fundamental domain of the manifold. For instance, a hyperbolic octagon for a double torus 

and a square for a square  torus. Now add another copy of the fundamental domain to the edge and keep doing so 

until all edges of the original manifold are covered. More copies are added to the resulting space recursively until 

a covering map with possibly infinite number of copies of the fundamental domain is obtained. The largest such 

possible cover is called the universal covering space. Thus, If 𝑓 ∶  𝑌 → 𝑋 is a covering map, then there exists a 

covering map 𝑓: 𝑋̃ → 𝑌 such that the composition of 𝑋 and 𝑋 ̃is the projection from the universal cover to  𝑋 .  

                                                        For example, a flat torus tiling a universal covering space can be likened to 

the screen of video game where on walking off the right end of the screen, one would emerge on the opposite edge 

and the same for the vertical edges. Thus, one gets the impression of an infinite space even though it is just a 

repetition of the same fundamental domain over and over. This type of a universal covering space is constructed by 

identifying the edges of a fundamental domain, and identifying the edges differently gives rise to a different set of 

orientations and symmetries on transition between different universes. 

1) 
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 Detectability of a Multi Connected Topology: 

                         There are basically three possible correlations between detectability of  topology and the size of 

the universe. First, that the universe could be infinite in which case, it is not possible to detect topology with 

currently known methods. Secondly the universe is finite but  much larger than the scale of the observable universe 

in which case, it is hard to detect visible signs of topology. The last and the best scenario would be a universe 

which is finite and comparable to the size of the observable universe, where we can thus use current methods to 

detect its structure. 

For a manifold 𝑀, there can be defined the smallest and largest circles in scribable in 𝑀, 𝑟𝑖𝑛𝑗, described in 

terms of the smallest closed geodesic, 𝑙𝑚and𝑟𝑚𝑎𝑥 respectively. A closed geodesic, that passes through a point  𝑥, in 

a multiplyconnected manifold is a part of the geodesic that connect that point to its image in the covering space  𝑀̃. 

The length of any such closed geodesic which passes through 𝑥, in a manifold with a fixed isometry g, is given by 

the distance function: 

𝛿𝑔(𝑥)  = 𝑑(𝑥, 𝑔𝑥) 
 

In terms of this distance, the injectivity radius can be defined as 

𝑟𝑖𝑛𝑗(𝑥) =
1

2
𝑚𝑖𝑛𝑔∈𝛤{𝛿𝑔(𝑥)} 

where  𝛤̃ denotes the covering group without the identity map. We can define the observation survey depths to 

be  𝜒𝑜𝑏𝑠 . A topology is said to be undetectable if 𝜒𝑜𝑏𝑠 < 𝑟𝑖𝑛𝑗 in which case we cannot detect any multiple images in 

the observable sky, and detectable for 𝜒𝑜𝑏𝑠 > 𝑟𝑖𝑛𝑗  

 

                             In a globally homogeneous manifold, the distance function for any covering  isometry is   

constant, hence 𝑟𝑖𝑛𝑗  is constant throughout space and the detectability of a topology does not depend on the 

observers position in the manifold, In inhomogeneous manifolds however, 𝑟𝑖𝑛𝑗  varies from point to point and thus 

the topology depends on both the observers position and the survey depth. In this case however, we can still define 

an absolute undetectability  condition, that is if for 

𝑟𝑖𝑛𝑗 = 𝑚𝑖𝑛𝑥𝜖𝑀{𝑟𝑖𝑛𝑗(𝑥)}, 

𝜒𝑜𝑏𝑠 < 𝑟𝑖𝑛𝑗  

 

then the topology is undetectable for all observers in 𝑀 

 

For a flat manifoldE3, the relationship between the horizon radius and the injectivity radius is pretty arbitrary 

since it is possible to stretch its  translational components to obtain any injectivity  radius. It is thus probably least 

likely to be able to detect a Euclidean topology from the three possible topologies. On the other hand, in the case of 

a Hyperbolic topology, the volume of the fundamental domain increases as the complexity of the Hyperbolic group 

Γ increases. However,the injectivity radius for the smallest hyperbolic manifolds exceeds the horizon radius. 

Spherical manifolds on the other hand decrease in size as the symmetry group 𝛤 becomes larger. 

 
 

Three Dimensional Manifolds of Constant Curvature : 

                                Current observations of the observable part of the universe imply a homogeneous and 

isotropic geometry to a precision of 1 part in 104, thus we should begin by considering topologies that are locally 

homogenous and isotropic, thereby the constant curvature Euclidean, Spherical and Hyperbolic geometries as 

deduced in this paper.  

                  Any compact 3-manifoldMwith a constant curvature k allows a discrete isometry subgroup 𝛤 acting 

freely and discontinuously on 𝑀̌. Such a manifold can also be written as𝑀̌ 𝛤⁄ , where 𝑀̌ is the universal covering 

space of M, given by Euclidean space (𝑓𝑜𝑟 𝑘 =  0), 3-sphere (for 𝑘 > 0) or the hyperbolic 3-space(𝑓𝑜𝑟 𝑘 < 0). 
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does an excellent work of classifying the Euclidean, Spherical and Hyperbolic manifolds further into sub manifolds 

as discussed below.  

  

 Euclidean Manifold: 

    The line element of the Euclidean covering space is given by: 

𝑑𝜎2 = 𝑅2{𝑑𝜒
2 + 𝜒2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙

2)} 

Where 𝜒 ≥ 0. 

             The full isometry group is given by 𝐺 = 𝐼𝑆𝑂(3) =𝑅3 × 𝑆𝑂(3) and the generators  of the possible 

holonomy groups 𝛤include different combinations of identity, translations, glide reflections and helicoidal motions. 

In total 18 different types Euclidean manifolds can be generated. The manifolds can be classified primarily into 

open and closed models. 

              The open models include orientable and non-orientable space-forms which can be classified with glide 

reflections. On excluding glide reflection as a holonomy group, we get four orientable space-forms. The non-

orientable space forms are not relevant to cosmology. The closed models on the other hand can be classified 

according to the different possible ways the opposite faces of a parallelepiped can be identified with each other. 

Another class of identifications can also be made on hexagonal fundamental polyhedron with rotations of 2π/3 and 

π/3. 

 

           

 Spherical Manifolds: 

                                 Spherical manifolds have a universal covering of a compact hypersphere.  A 3-sphere 𝑆3of 

radius 𝑅 is the set of all points in 4-Dimensional Euclidean Space.  

The metric of the 3-sphere with coordinates 𝑥0, 𝑥1𝑥2, 𝑥3 can be written as  

(𝓍0)2 + (𝓍1)2 + (𝓍2)2 + (𝓍3)2 = 𝑅2 

 Converting to angular coordinates(𝜒, 𝜃, 𝜑), for 𝜒 and 𝜃: [0, 𝜋], 𝜑: [0,2𝜋] 𝓍0=𝑅 𝑐𝑜𝑠𝜒, 𝓍1=𝑅 𝑠𝑖𝑛𝜒 𝑐𝑜𝑠𝜃,  

𝓍2 = 𝑅 𝑠𝑖𝑛𝜒𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝓍2 = 𝑅𝑠𝑖𝑛𝜒 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑.  

We get the metric: 

𝑑𝜎2 = 𝑅2{𝑑𝜒
2 + 𝑠𝑖𝑛𝜒

2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙
2)} 

From 

 

𝑑𝜎2 = (𝑑𝑥0)2 + (𝑑𝑥1)2 + (𝑑𝑥2)2 + (𝑑𝑥3)2 

 

The volume of the covering manifold is given by 

𝑣𝑜𝑙(𝑆3) = ∫ 4𝜋 𝑅2 𝑠𝑖𝑛𝜒
2  𝑅𝑑𝜒 =  2𝜋2𝑅3

𝜋

0

 

Substituting 𝑟 =  𝑠𝑖𝑛𝜒 in metric, we get the FLRW metric form of the spherical manifold 

𝑑𝜎2 = 𝑅2{
𝑑𝑟2

(1 − 𝑟2)
+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙

2)} 

   A good way of visualizing a 3-sphere is to use the analogy of a 2-sphere,where if we intersect the sphere with 

a plane and pass it through the sphere, the intersection points form circles of increasing diameter and subsequently 

of de-creasing diameter. Similarly, one can imagine the intersection of a 3-sphere with a 3-dimensional hyperspace 

and forming spheres of increasing diameter before reducing in size again to zero.  

              The holonomy groups of 𝑆3were classified into subgroups 𝛤 of 𝑆𝑂(4)acting freely and discontinuously 

on 𝑆3:- 

1) Cyclic group of order 𝑝, 𝑍𝑝 (𝑝 ≥ 2) ∶ 𝑍𝑝 can be seen as generated by the rotations by an angle 2𝜋/𝑝 

about some axis [𝜃, 𝜑] of𝑅3. 
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2)  Dihedral group of order 2𝑚, 𝐷𝑚(𝑚 ≥ 2): Generated by rotations in the plane by an angle 2𝜋/𝑚 and a 

reflection about a line through the origin. The operation preserves regular m-gons lying in the plane and centered 

on the origin. 

3) Polyhedral Groups: Symmetry groups of the regular polyhedra in 𝑅3 namely the Tetrahedral group of 

order 12, octahedral group of order 24 and Icosahedral group of order 60. The cube is included in the symmetry 

group of the octahedron and the dodecahedron is included in the symmetry group of the icosahedron.  

               There is an infinite number of spaces that can be obtained by taking the quotent of 𝑆3 with the above 

groups and varying the parameters p and m. The volume of the quotient manifold, 𝑀 = 𝑆3/𝛤 obtained is given by 

𝑉𝑜𝑙 (𝑀)  =  2𝜋2𝑅3/|𝛤|. 
 

 

 Hyperbolic Manifolds: 

                      Some of the most important contributions to locally  hyperbolic  spaces were made by Thurston , 

however these  manifolds still remain much less understood than other homogeneous manifolds. Nevertheless,𝐻3 

can be embedded in Minkowski space, 𝑅3 of  metric  

𝑑𝑠2 = −(𝑑𝑥1)2 + (𝑑𝑥2)2 + (𝑑𝑥3)2 + (𝑑𝑥4)2 

 

as  the  hypersurface 

−(𝑥1)2 + (𝑥2)2 + (𝑥3)2 + (𝑥4)2 

 

  Thereby, the generators of the fundamental group G of 𝐻3can be related to homogeneous Lorentz 

transformations. 

    Let us make   coordinate transformations to introduce (𝜒, 𝜃, 𝜑) with 𝜒 ∈ [0, 𝑖𝑛𝑓), 𝜃 ∈ [0, 𝜋], 𝜑 ∈ [0,2𝜋], we 

get  

                𝑥1 = 𝑅𝑐𝑜𝑠ℎ𝜒, 𝑥2 = 𝑅𝑠𝑖𝑛ℎ𝜒𝑐𝑜𝑠𝜃, 𝑥3 = 𝑅𝑠𝑖𝑛ℎ𝜒𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑥4 = 𝑅𝑠𝑖𝑛ℎ𝜒𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑. 

We thereby get the metric for 𝐻3 as: 

𝑑𝜎2 = 𝑅3{𝑑𝜒
2 + 𝑠𝑖𝑛ℎ2

𝜒(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) 

This metric can be expressed in a more commonly used, FLRW form, of the metric, obtained by the coordinate 

change,  𝑟 = 𝑠𝑖𝑛ℎ𝜒  that gives us: 

𝑑𝜎2 = 𝑅2{
𝑑𝑟2

(1 + 𝑟2)
+ 𝑑𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙

2)} 

The holonomies of 𝛨3can be described as the group of fractional linear trans-formations acting of the complex 

plane:  

                                    𝑧′ =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
, 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ, 𝑎𝑑 − 𝑏𝑐 =  1. 

This group is equivalent to the group of conformal transformations of 𝑅3 which leave the upper half space 

invariant. 

          The hyperbolic geometries for dimension > 2 are different from the 2-dimensional case. For instance, 

while a surface (𝑔𝑒𝑛𝑢𝑠 ≥ 2) can support an infinite number of non-equivalent hyperbolic   metrics, a connected 

oriented manifold (𝑛 ≥ 3) can only support at most one hyperbolic metric. This is confirmed further by the rigidity   

theorem which confirms that if two hyperbolic manifolds (dimension, 𝑛 ≥ 3) have  isomorphic fundamental groups, 

they are necessarily isometric to each other. Hence for  𝑛 ≥ 3, the volume of a manifold and the lengths of  its 

closed geodesics are topological invariant 

            For compact Euclidean spaces, the fundamental polyhedron can possess only   a maximum   number of 

eight faces, despite allowance of arbitrary volume.  In spherical manifolds, the volume needs to be finite and a 

fraction of the maximum possible   volume S, i.e. 𝑆/𝛤.   For the case of hyperbolic   manifolds however, there is no 

limit on the possible number of faces of the fundamental polyhedron. There is a lower limit however, on the  

minimum volume of the hyperbolic 3-manifold,a lower limit of which  was set by Meyerhoff to be 

  𝑉𝑜𝑙𝑚𝑖𝑛 > 0.00082𝑅3 . 
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COSMOLOGY TOPOLOGY 

 The global topology of the universe can be tested by studying the 3-Dimension distribution of discrete sources 

and the 2-Dimension fluctuations in the “COSMIC MICROWAVE BACKGROUND” (CMB). This methods, which 

is based on the “ghost image” which was predicted by FRIEDMANN(1924), namely topological images and it is 

same as celestial object such as galaxy, a cluster or a spot in the CMB (the term “ghost” can lead to confusion in 

the sense that all the images are on the same foot of the reality). Such topological images can appear in a multi-

connected space a characteristic length scale of which is smaller than the size of the observable space, because 

light emitted by a distant source can reach an observer along several null geodesics. In the 1970’s systematic 2-D 

observations of galaxies, undertaken at the 6-m Zelentchuk telescope under the supervision Schvartsman, allowed 

to fix lower limits to the size of physical space as 500−1Mpc (see LaLu95 and references herein). A new 

observational test based on the 3-D analysis of cluster seperations, the so-called “cosmic crystallographic 

method”, has been proposed by LEHUCQ, LACHIEZE REY & LUMINET (1996), and further discussed in the 

literature (FAGUANDES & GAUSMANN, 1997; ROUKEMA & BLANLOEIL,1998). Other 3-D methods, using 

special quasars configurations (ROUKEMA,1996) or X-ray clusters (ROUKEMA & EDGE,1997), have also 

devised , see ROUKEMA (1998) for a summary. However, the poorness of 3-D data presently limits the power of 

such methods. 

        Some authors (DE OLIVEIRA-COSTA et al., 1996), still believing that an inflationary scenario necessarily 

leads to an Einstein-de-Sitter universe, looked for constraints on topology with the CMB by investigating the 

compact Euclidean manifolds (CEM) only. They found that toroidal universe with rectangular cells ( the simplest 

CEM, describe as 𝐸1 in LaLu95’s (classification), with cell size smaller than 300ℎ−1 Mpc for a scale-invariant 

power spectrum, were ruled out as “interesting cosmological models”. However, as shown by FAGUNDES & 

GAUSMANN (1997),CEMs remain physically meaningful even if the size of their spatial sections is of the same 

order of magnitude as the radius of the observable horizon. Using the method of cosmic cryptallography 

(LEHOUCQ 𝑒𝑡 𝑎𝑙 ., 1996) they performed simulations showing sharp peaks in the distributions of distances 

between topological images. 

       In  any case, CHMs appear today as the most promising specimens for cosmology, both from theoretical 

and observational grounds. Topological signature using the “circles in the sky” method (CORNISH et al., 1996b) 

is difficult to detect in COBE data, but it could be possible with the future MAP and /or PLANCK data. 

     In fact, full cosmological calculations in CHMs (e.g. simulations of CMB fluctuations, or possible Casimir-

like effects in the early universe) are difficult; they require calculations of Eigenmodes of the Laplace operator 

acting on the compact manifold. The problem is not solved. CORNISH & TUROK (1998) recently worked out the 

method in 2-D, but the 3-D case could reveal less tractable. Compactness renders the calculations more difficult 

due to “geodesics mixing”, namely chaotic behavior of geodesic bundle (CORNISH et al., 1996a). Some authors 

(LEVIN 𝑒𝑡 𝑎𝑙 ., 1997, CORNISH et al., 1997) were able to perform calculations in the “horn topology”, an open 

hyperbolic space introduced by SOKOLOFF and SAROBINSKY (1976), but the essential job remains to be done. 

             Another underdeveloped promising field is the interface between topology and the early universe at high 

energy (although below the Planck scale). UZAN and PETER (1997) showed that if space is multi-connected on 

scales now smaller than the horizon size, the topological defects such as strings, domains walls,..  expected from 

GUT to arise at the phase transitions, were very unlikely to form. 

      In my opinion, a major break through  in the field of cosmic topology would be to relate the topological 

length scale 𝐿𝑇  with cosmological constant A. In an unified scheme with two fundamental lengths scales the Planck 

scale 𝑙𝑝 and the inverse square root of the cosmological constant A, a consistent theory of the quantum gravity 

should be able to predict the most probable value of 𝐿𝑇 in terms of 𝑙𝑝 and 𝐴−1 2⁄  . Preliminary calculations in 2-D 

gravity models can be performed to test the idea. 
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STANDARD COSMOLOGY: 

 The Friedmann-Lemaitre-Robertson-Walker Model: 

                           A homogeneous and isotropic universe is one that can be sliced into maximally symmetric 3 

spaces of constant curvature and these symmetries constrain greatly the possible allowed solutions to the global 

metric. 𝐹𝑟𝑖𝑒𝑑𝑚𝑎𝑛𝑛, 𝑅𝑜𝑏𝑒𝑟𝑡𝑠𝑜𝑛 and  𝑊𝑎𝑙𝑘𝑒𝑟 proposed a metric which gives us all possible solutions for such 

constant curvature universes. The solutions include big bang solutions, 𝑑𝑒 𝑆𝑖𝑡𝑡𝑒𝑟 solutions and also includes those 

requiring a cosmological constant.            

The 𝐹𝑟𝑖𝑒𝑑𝑚𝑎𝑛𝑛 − 𝐿𝑒𝑚𝑎𝑖𝑡𝑟𝑒 − 𝑅𝑜𝑏𝑒𝑟𝑡𝑠𝑜𝑛 − 𝑊𝑎𝑙𝑘𝑒𝑟 metric is of the form: 

𝑑𝑠2 = 𝑔𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝜇 = −𝑑𝑡2 + 𝑎2(𝜂)[
𝑑𝑟2

(1 − 𝑘𝑟2)
+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2)] 

 

Where 𝑎(𝑡) is the scale factor and 𝜅 =  0, −1,1 corresponds to a flat, positively curved or negatively curved 

universe respectively.  

       Converting to conformal coordinates where the manifold can be thought of as a constant curvature manifold 

and the dynamics is incorporated into the conformal scale factor 𝑎(𝜂) using the definition of conformal 𝑡𝑖𝑚𝑒𝑑𝜂 =

𝑑𝑡/𝑎(𝑡).  The expression now becomes  

𝑑𝑠2 = 𝑎2(𝜂)[−𝑑𝜂2 + 𝑑𝜎2] 

 where  the spatial part of the metric is given by 

𝑑𝜎2 = 𝑑𝜒
2 + 𝑓(𝑥)(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙

2  

𝑓(𝜒) is a function of curvature given by 

𝑓(𝜒) = (𝜒2  ∶    𝑟 = 𝜒   ∶   𝑓𝑙𝑎𝑡) 

                                                                 𝑓(𝜒) = (𝑠𝑖𝑛ℎ2
𝜒        :     𝑟 = 𝑠𝑖𝑛ℎ𝜒    ∶ ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐) 

                                                                 𝑓(𝜒) = (𝑠𝑖𝑛2
𝜒

∶    𝑟 = 𝑠𝑖𝑛𝜒     ∶   𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙) 

 Einstein’s General theory of Relativity 

               Einstein related the curvature of space-time to matter with the local Einstein equations: 

𝐺𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 

Where 𝐺𝜇𝜈 represents a function of the metric of space-time and 𝑇𝜇𝜈is the energy momentum tensor representing 

the matter distribution in space. These equations quantify the influence of matter fields on local curvature, however 

they do not determine the large-scale topology of the universe.  
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The Einstein’s equation 𝐺𝜇𝜈 = 8𝜋𝐺𝑁𝑇𝜇𝜈  is a non-linear system of ten partial differential equations. In the case 

of a 𝐹𝑟𝑖𝑒𝑑𝑚𝑎𝑛𝑛 − 𝐿𝑒𝑚𝑎𝑖𝑡𝑟𝑒 − 𝑅𝑜𝑏𝑒𝑟𝑡𝑠𝑜𝑛 −  𝑊𝑎𝑙𝑘𝑒𝑟(𝐹𝐿𝑅𝑊) universe, it reduces to two ordinary differential 

equations which can be rearranged to give us the 𝐹𝑟𝑖𝑒𝑑𝑚𝑎𝑛𝑛  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 below: 

3
𝑎2̇

𝑎2 + 3
𝑘

𝑎2 = 8𝜋𝐺𝑁𝜌, 

                                   3
𝑎̈

𝑎
= −4𝜋𝐺𝑁(𝜌 + 3𝑝) 

   From these equations, one can obtain the energy continuity equation given by  

                                 𝜌̇ = −3(𝜌 + 𝑝)
𝑎̇

𝑎
 

   we deduce that the global energy density is a function of curvature. The correspondence is made in terms of 

the density parameter, Ω = 𝜌/𝜌𝑐  where  𝜌𝑐 is the total density of a flat universe and can be obtained by taking 

𝜅 =  0  which gives us  𝜌𝑐 = 3𝐻2 8𝜋𝐺⁄  

    in terms of Ω, we get the expression 𝐻2𝑎2(𝛺 − 1) = 𝑘, where it becomes evident that  Ω > 1 for 𝜅 = 1 and 

Ω < 1 for 𝜅 = −1. Hence the universe will be positively curved for 𝜅 = 1 and negatively curved for   𝜅 = −1 . 
           In terms of the curvature radius, 

𝑅𝑐𝑢𝑟𝑣 =
1

𝐻|𝛺 − 1|1 2⁄
 

Four Dimensional Manifolds of Curvature (Space Time Topology) : 

  One of the topological structure called “Space-Time” and it is widely used in the Einstein’s Special Theory of 

Relativity. And it comes under as Fourth dimension. A four dimensional space is a mathematical extension which is 

under the concept of 3-dimensional or 3D space. In this dimension Einstein predict the universe is in the shape of 

“Curvature” where the gravity which is work in that curvature under the space-time dimension. 

            There are three types of Space-Time: 

1) Manifold  Topology  

2) Path or Zeeman Topology 

3) Alexandrov  Topology  

 

Geometry of Space-Time: 

                   In Minkowski space-time which is actually similar to the 3-dimensional Euclidean space but the 

slide difference between these two are distance which is differed with respect to “Time”. 

       In 3D space, the differential distance  ” 𝑑𝑟”  is defined by  

𝑑𝑟
2 = 𝑑𝑋 . 𝑑𝑋 

                                                                                   = 𝑑𝑥1

2 + 𝑑𝑥2

2 + 𝑑𝑥3

2
 

                                                       𝑑𝑥 = (𝑑𝑥1,𝑑𝑥2,𝑑𝑥3
)   

  are the differentials of the three spatial dimensions Minkowski geometry, extra dimension with coordinate 𝑥𝐷 , 

which derived from “time”. Such that differential distance  

𝑑𝑟
2 = 𝑑𝑥0

2 + 𝑑𝑥1

2 + 𝑑𝑥2

2 + 𝑑𝑥3

2
 

       (𝑑𝑥 = 𝑑𝑥0
, 𝑑𝑥1

, 𝑑𝑥2
, 𝑑𝑥3

 ) are the differentials of the four space-time dimensions. Special relativity which is 

simply a Rotational symmetry of the space-time and which is the analogous of the Euclidean space.  So the 

Euclidean space used the Euclidean metric and space-time used the Minkowski metric. 
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                        Euclidean space                                            Minkowski space 

 

 

 3D space-time: 

 

Three- dimensional dual-cone. 

                    The spatial dimension which is reduced by 2 dimension then it is represent the 3D space 

𝑑𝑟
2 = 𝑑𝑥1
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The three dimensional dual cone, the null geodesics which is lies along the cone then it becomes 
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This is equation of the circle of radius 𝒔 𝒅𝒕. 

 4D Space-Time: 

                  The spatial dimension which is extended into 3 dimension the null geodesics are become 4 dimensional 

cone   

 

 

 

 Concentric spheres, illustrating in 3-space the null geodesics of a 4-dimensional cone in space-time. 

In this concentric circles, the null geodesics in a set of continuous concentric spheres with radii = 𝑠 𝑑𝑡. 

This null dual- cone represents the “line of sight” of a point in space. For example when we look at the stars and  

From the light to I receiving is X years old. And the receiving line is called “The line lying down is the line of sight: 
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a null geodesics”. The looking at an event a distance away and a time  
𝑑

𝑠
   in the past. It is because of the null dual 

is also called light cone. (In simple words, In the figure the lower point represent the “star”, the origin represent 

the “observer”, the line represent the null geodesic is the “the line of sight” ). 

(The cone in the -t region is the point “receiving”). 

(The cone in the +t region is the point “sending”). 
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